
EUROGRAPHICS 2003 / P. Brunet and D. Fellner
(Guest Editors)

Volume 22(2003), Number 3

Planning Collision-Free Reaching Motions for Interactive
Object Manipulation and Grasping

Marcelo Kallmann,1† Amaury Aubel,2† Tolga Abaci3 and Daniel Thalmann3

1 Robotics Research Lab, University of Southern California, Los Angeles, United States, kallmann@usc.edu
2 DreamWorks Animation, Glendale, United States, aaubel@anim.dreamworks.com

3 Virtual Reality Lab, Swiss Federal Institute of Technology, Lausanne, Switzerland, {tolga.abaci|daniel.thalmann}@epfl.ch

Abstract
We present new techniques that use motion planning algorithms based on probabilistic roadmaps to control 22
degrees of freedom (DOFs) of human-like characters in interactive applications. Our main purpose is the auto-
matic synthesis of collision-free reaching motions for both arms, with automatic column control and leg flexion.
Generated motions are collision-free, in equilibrium, and respect articulation range limits. In order to deal with
the high (22) dimension of our configuration space, we bias the random distribution of configurations to favor
postures most useful for reaching and grasping. In addition, extensions are presented in order to interactively
generate object manipulation sequences: a probabilistic inverse kinematics solver for proposing goal postures
matching pre-designed grasps; dynamic update of roadmaps when obstacles change position; online planning of
object location transfer; and an automatic stepping control to enlarge the character’s reachable space. This is, to
our knowledge, the first time probabilistic planning techniques are used to automatically generate collision-free
reaching motions involving the entire body of a human-like character at interactive frame rates.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Recent research in the character animation domain has
mainly concentrated on the generation of realistic move-
ments using motion capture data. Probably on account of
its difficult nature, the problem of automatically synthesiz-
ing collision-free motions for object manipulation has re-
ceived little attention from the Computer Graphics commu-

† Work done while at EPFL - Virtual Reality Lab

nity. Most of the techniques developed1 have not sufficiently
explored this domain.

The automatic generation of collision-free grasping se-
quences has several direct applications in virtual real-
ity, games, and computer animation. And yet, producing
collision-free grasping motions currently involves lots of te-
dious manual work from designers.

Motion planning originated in Robotics, with an em-
phasis on the synthesis of collision-free motions for any
sort of robotic structure2. Some works have applied mo-

c© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Kallmann et al / Planning Collision-Free Reaching Motions

tion planning to animate human-like characters manipulat-
ing objects3, 4. However, the nature of the articulated struc-
tures being controlled is usually not taken into consideration.
Most often, only one arm is used for reaching while the rest
of the body remains static.

We present in this paper a collection of new tech-
niques based on probabilistic motion planning for control-
ling human-like articulated characters. Our goal is to syn-
thesize valid, collision-free grasping motions while taking
into account several human-related issues, such as: control
of the entire body (including leg flexion, spine and clavicle-
shoulder complex), joint coupling (e.g. spine), articulation
limits, and comfort criteria.

We mainly concentrate on the reaching phase problem,
i.e., how to compute a valid collision-free motion between
two postures. Our method operates on 22 degrees of freedom
(DOFs) of an abstract control layer, mapped to the actual
DOFs of the character (over 70).

In order to deal with the reduced yet high dimensional
configuration space defined by the abstract control layer,
we make use of a pre-computed Probabilistic Reaching
Roadmap encoding comfort criteria. This roadmap is con-
structed with a carefully tailored sampling routine that effi-
ciently explores the free regions in the configuration space
and favors postures most useful for grasping.

In addition, we present several extensions applied to the
problem of object manipulation: a probabilistic inverse kine-
matics method used to automatically propose goal postures
for designed grasps, a technique to dynamically update the
roadmap when obstacles change position, a method for plan-
ning transfer motions when objects are attached to the char-
acter’s hands, and an automatic stepping control mechanism
to enlarge the character’s reachable space.

We have fully implemented the methods proposed herein
as integrated interactive tools for the production of object
manipulation sequences. After a preprocessing of a few min-
utes (to compute the required roadmaps and manipulation
postures), manipulation motions are quickly synthesized.
Several animation sequences of a character reaching for and
manipulating objects are presented to demonstrate the effec-
tiveness of our method.

2. Related Work

It is common sense that the use of motion captured data is
the best approach to achieve realistic human-like motions
for characters. Several advances have been proposed on this
subject5, 6, 7, 8, 9. However, for motions such as object manip-
ulation, the main concern is on the precise control and cor-
rectness of motions, and thus captured data are hard to re-
use.

The key problem for object manipulation is to solve the
reaching phase for a given target 6-DOF hand location. The

most popular approach is to somehow solve the underlying
inverse kinematics (IK) problem9, 10, 11, 12. However, three
main difficulties appear when devising IK algorithms. First,
as the problem is under determined, additional criteria are
needed in the system formulation in order to select valid and
natural postures among all possible ones. Second, IK algo-
rithms alone do not ensure that generated postures are free
of collisions. Last, IK algorithms are more suitable for syn-
thesizing postures than animations.

Computing collision-free reaching motions is in fact a
motion planning problem2. Among the several existing
methods, those based on probabilistic roadmaps13, 14, 15, 16

are particularly amenable to high-dimensional configura-
tion spaces. Roadmaps can typically be computed in a pre-
processing step and re-used for fast on-line querying.

Different strategies have been proposed to construct
roadmaps. Visibility-based Roadmaps16 use a visibility cri-
terion to generate roadmaps with a small number of nodes.
Rapidly-Exploring Random Trees (RRTs)14, 17 generate a
tree that efficiently explores the configuration space. Be-
cause of this important property, we make use of RRTs as
the growing strategy to construct our roadmap.

Other kinds of motion planners have been applied to the
animation of human-like characters3, 4, 18. However, these
works are limited to the control of only one arm at a time. In
another direction, a posture interpolation automaton19 was
proposed, however with collision avoidance treated as a post
process based on a force-field approach, which is highly sen-
sitive to local minima.

In order to compute complete grasping and object ma-
nipulation sequences, several extensions are required. We
follow the idea of predefining grasps (hand locations and
shapes) for each object to be manipulated20, 21, 22, and de-
veloped a probabilistic IK algorithm to automatically pro-
pose goal postures matching the predefined grasps. The IK
algorithm is inspired by some approaches based on Genetic
Algorithms23, 24.

Other works have also addressed the dynamic update of
roadmaps25, allowing to cope with object displacement in
the workspace. We present here a similar technique except
that we maintain a roadmap that is always a single connected
component.

3. Method Overview and Paper Organization

A character posture is defined using a 22-DOF abstract con-
trol layer divided as follows: 9 DOFs to control each arm, 3
DOFs to control spine and torso movements, and 1 DOF to
control leg flexion. Hereafter, when we speak of configura-
tions, postures and DOFs, we are referring to configurations,
postures and DOFs of the abstract control layer.

Let C be the 22-dimensional configuration space of our

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

control layer. LetCf ree denote the open subset of valid con-
figurations inC. A configuration is said to be valid if the
corresponding posture: is collision free, respects articulation
range limits, and is balanced.

A sampling routine is responsible for generating random
valid configurations inCf ree. As the dimension ofC is high,
several heuristics are implemented in order to favor the gen-
eration of postures most useful for grasping. The configura-
tion sampling routine and the abstract control layer specifi-
cation are presented in Section 4.

The sampling routine is used to construct our roadmap.
We first run the standard RRT algorithm14, 17 to build a
roadmap from the initial rest posture, and then apply a pro-
cess which adds extra valid edges (or links) to existing
nodes. Valid extra edges are added only if they represent a
shorter path in the roadmap, i.e. if they represent a shortcut.
The final step is to perform a proper weighting according to
comfort criteria. As a result we obtain a Probabilistic Reach-
ing Roadmap, hereafter simply referred to as roadmap. The
roadmap construction process is detailed in Section 5.

Let R be a roadmap which was computed during an off
line phase. Letqc be the current character configuration and
let qg be a given valid goal configuration. A pathP in Cf ree
joining qc andqg is determined by finding the shortest path
in R joining the nearest nodes ofqc andqg in R. PathP is
said to be valid if all configurations interpolated alongP are
valid, and in this case a final smoothing process is applied in
order to obtain the final reaching motion. This entire process
is described in Section 6.

As configurations have 22 DOFs, we allow designers to
specify only target 6 DOFs hand locations to be reached, and
a probabilistic IK algorithm automatically proposes valid
goal configurations. This probabilistic IK algorithm and sev-
eral other extensions useful for creating animations involv-
ing grasping and displacement of objects are presented in
Section 7.

Section 8 presents and discusses obtained results, and fi-
nally Section 9 presents conclusions and future work.

4. Configuration Sampling

Configuration Definition. A complete configuration of our
abstract control layer is defined by a set of 22 DOFs. Each
arm is defined by 9 DOFs, five of which are devoted to the
shoulder complex, the four remaining ones being equally
distributed on the elbow and wrist. The character’s spine,
which comprises the lumbar and thoracic vertebrae, is com-
pletely determined by three DOFs, each of which controlling
a unique rotational direction. Finally, 1 translational DOF
controls the flexion of the legs.

We represent the arm’s kinematic chain by four rotational
joints: clavicle, shoulder, elbow and wrist. Except for the el-
bow, which is parameterized by two Euler angles (flexion

and twist), we use the natural swing-and-twist decomposi-
tion defined by Grassia26:

R= RtwistRswing, where

Rtwist = Rz(θ), andRswing=
[
Sx Sy 0

]

The swing motion is performed by a rotation parameter-
ized by the above axis-angle. Note that the rotation axis for
the swing always lies in the x-y plane perpendicular to the
skeleton segment. The axial rotation (or twist) that follows
occurs around the (arbitrarily chosen) z-axis of the local
frame. In practice, the axial rotation is not used for clavicle
and wrist joints and we simply setθ = 0.

The one singularity of the parameterization is reached
when the swing vector has normπ. Consequently, the sin-
gularity is easily avoided for the motion range of human
joints by choosing an appropriate zero posture (i.e., when
Sx = Sy = 0). For the shoulder joint for instance, we choose
a reference posture in which the arm is outstretched.

We place limits on each arm joint individually. Elbow
flexion, elbow twisting and shoulder twisting are limited by
confining the corresponding angles to a given range. The
direction of the upper arm is restricted to the interior of a
spherical polygon27. The same kind of directional limit is
applied to the clavicle and wrist joints.

The many joints in the spine are controlled by a reduced
set of three DOFs, which determine respectively the total
spine flexion (bending forward and backward), roll (bend-
ing sideways) and twist. While roll and twist are distributed
uniformly over the spine joints, we apply the flexion mainly
on the lumbar vertebrae. This distribution ensures that when
the character bends forward, its back remains straight and
not unnaturally hunched. This approach gives good results
(see Figure 2) and is simpler than other spine coupling
strategies28.

Leg flexion is determined through the use of an IK solver.
We first constrain the position and orientation of the feet to
remain fixed with respect to the ground. Then we analyti-
cally compute the required rotations at the hips, knees and
ankles to lower the waist according to the value of the DOF,
which represents the vertical translation of the pelvis. Note
that the same DOF could be used to make the character stand
on tiptoes so as to reach higher.

Sampling. The sampling routine is responsible for gen-
erating random valid configurations. The random generation
takes place in the 22-DOFs parameter space. For the most
part, parameters are randomly generated directly within the
allowed range (i.e., articulation limits). For DOFs that con-
trol a swing movement, however, directly generating param-
eters that respect directional limits is difficult for lack of an
analytic formulation of the spherical polygon. In such cases,
we simply keep iterating until the directional limits are re-
spected (shoulder), or project the current direction onto the
borders of the spherical polygon (wrist). Before accepting

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

the random posture, we finally check if it is balanced and
free of collisions.

The balance test performs a projection of the character’s
center of mass onto the floor, and check if it lies inside the
support polygon defined as the convex hull of the feet base.

Rigid objects representing body parts are attached to the
skeleton and used for collision checking. We first deactivate
collision checking for all pairs of body parts that intersect in
the rest posture (assumed to be valid collisions). Deactivated
pairs are mainly adjacent body parts in the skeleton. After
this initialization process, a collision is said to take place
if any activated pair of body parts intersects, or if any body
part collides with the environment. Note that rigid body parts
are used for collision checking but that a regular skinning
technique is used for displaying a realistic character with de-
formable skin. We employ the V-Collide library29 for colli-
sion checking.

As the dimension of our configuration space is high, we
bias the random distribution of configurations in order to fa-
vor postures most useful for reaching and grasping. More
specifically, we distinguish two posture types:

• Regular postures have little spine motion, little leg flexion,
no clavicle motion and random arm poses.

• Distant-reaching postures have large spine motion and/or
large leg flexion, little elbow flexion, shoulder-clavicle
coupling, arm-legs coupling, and arm-torso coupling.

In our current implementation, regular and distant-
reaching postures are generated with a respective likelihood
of 60% and 40%. Also, 66% of distant-reaching postures use
the right hand as if the character were right-handed (see Fig-
ure 1).

Figure 1: Example roadmap (with little knee flexion). Each
configuration in the roadmap is graphically represented with
two graph nodes, which are the positions of the right (purple
color) and left (blue color) wrist. Asymmetry results from the
preference given to the right arm.

Regular postures are useful when spine motion is not
needed to reach a location with the hand. Note that, how-
ever, we always generate a small amount of spine motion to
avoid robotic-like motions due to a completely static verte-
bral column.

Distant-reaching postures are suitable for remote objects

that cannot be reached with arm motion only. Example pos-
tures can be seen in Figure 2. An important concept for
generating distant-reaching postures is the use of couplings.
These serve to favor configurations that expand the reachable
space of the character. Leg flexion for instance, is authorized
if one arm points downwards as if to reach for a low ob-
ject. Similarly, the spine is bent so that the up-most thoracic
vertebra travels in roughly the same direction as that of the
arm. Finally, the clavicle is moved in such a way that another
few centimeters are gained toward the imaginary location the
arm points at.

Figure 2: Examples of distant-reaching postures.

Instead of computing two separate roadmaps for the right
and left arms, we generate a single roadmap encoding mo-
tions of both arms. Besides reducing memory consumption
and storage costs for large roadmaps, we guarantee that
while reaching with one arm, possible motions of the spine
will not induce collisions with the other arm. A further ben-
efit is that our roadmap can also handle multi-hand reaching
motions.

5. Roadmap Computation

The roadmap construction relies mainly on three functions:
the sampling routine, the distance function and the interpo-
lation function. We now describe the latter two.

Distance function.Good results are usually obtained with
distance functions based on the sum of the Euclidean dis-
tances between corresponding vertices lying in the shape of
the articulated structure2, 7. We use a similar yet simplified
approach based on a selected set of articulations: the bottom-
most lumbar vertebra, the top-most thoracic vertebra, the ar-
ticulations of both arms (shoulder, elbow and wrist), and fi-
nally the thumb and pinky base joints to capture arm twisting
and wrist rotations. Letq1 andq2 be two configurations. Our
distance functiondist(q1,q2) returns the average sum of the
Euclidean distances between the corresponding selected ar-
ticulations at configurationsq1 andq2.

The primary advantage of our distance function is its

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

speed. Another important property is that it remains inde-
pendent of both the skin deformation module and the ver-
tices density distribution in the skin mesh.

Interpolation function. The interpolation function
interp(q1,q2, t) returns, for eacht ∈ [0,1] a configuration
varying from q1 (t = 0) to q2 (t = 1). The interpolation
function applies spherical linear interpolation between cor-
responding joints, except for the translational joint control-
ling leg flexion and the elbow, which is parameterized with
Euler angles. For these joints, linear interpolation is applied.

The interpolation is said to be valid if, for all values of
t ∈ [0,1], the interp function returns a valid configuration.
The implementation of the interpolation validity test is ap-
proximate: An interpolation is considered valid ifn equally
spaced interpolated configurations betweent = 0 andt = 1
are valid. The numbern trades computation precision for
speed, and its value is also adjusted according to the distance
between the two configurations.

Roadmap growing process.The roadmap construc-
tion starts with the tree growing process of the RRT
algorithm14, 17. The initial posture is the character’s rest pos-
ture, i.e. standing straight with arms lying by the side. This
rest posture is well suited for generating a tree with nearly
uniform branch depth.

In the RRT algorithm a random configurationqrand is used
as a growing direction. The nearest configurationqnear in the
current tree is determined and a new configurationqnew is
computed as:

qnew= interp(qnear,qrand, t), where

t = ε/d, d = dist(qnear,qrand)

If qnew is valid and the interpolated path toqnear is also
valid, qnew is linked toqnear, making the tree grow by one
node and one edge. The new edge is assigned the costε.
The factorε represents the roadmap edge length, i.e. the in-
cremental step by which the tree is grown. Large steps make
the roadmap grow quickly but with more difficulty to capture
the free configuration space around obstacles. Inversely, too
small values generate roadmaps with too many nodes, thus
slowing algorithms down. Good values forε mainly depend
on the complexity of the environment.

The tree generation process runs until a specified number
of nodes is reached. In our experiments, we worked with
graphs made up of around 1500 nodes.

Shortcuts. Once the tree is constructed we transform it
into a graph with the process of shortcuts creation: for each
pair of leaf nodes(l1, l2) in the tree, an edge linkingl1 to l2
is added to the roadmap if:

• the interpolation betweenl1 andl2 is valid,
• dist(l1, l2) < shortest path in the tree joiningl1 andl2,
• dist(l1, l2) < r.

Shortest paths are easily determined by running anA∗

algorithm2 over the roadmap, taking into account the costs
associated to the roadmap edges. The radiusr is a parameter
that specifies a limit on the length of shortcuts created and
serves also to control the total number of shortcuts added to
the roadmap.

Figure 3 illustrates the effect of adding shortcuts in the
simpler 2-dimensional configuration space problem. In this
example, the square is the sole obstacle and the root of the
tree is on the left side of the square.

Figure 3: The roadmap before (left image) and after (right
image) the insertion of shortcuts.

Single arm costs.The roadmap constructed so far en-
codes in each edge a cost defined as the distance between the
two configurations linked by the edge. These configurations
contain random positions for both arms of the character. As
we use the same roadmap to determine single-arm motions
as well, we also store in each edge of the roadmap two ad-
ditional costs. The right arm motion cost is calculated with
a distance function that simply does not take into considera-
tion the joints in the left arm. Conversely, the left arm motion
cost is determined by ignoring joints in the right arm.

Weights. In the final stage, we assign to each roadmap
edge a proper weight to favor the determination of paths
with better comfort characteristics. Different heuristics can
be used to determine such weights. We use the central idea
of favoring motions passing near the rest posture. We first
compute the distance between the rest posture and the mid-
point of each roadmap edge. Each edge is assigned this dis-
tance scaled to the interval[k,1],k∈ [0,1). Parameterk gives
the amount of influence of the weighting and is controlled
through the user interface. The weighting scheme helps,
among others, to generate motions with the arm closer to
the body.

6. Roadmap Querying

Let Rbe a roadmap computed during an off line phase, as de-
scribed in the previous section. Letqc be the current (valid)
character configuration and letqg be a given valid goal con-
figuration to reach. Note thatqc and qg are not necessar-
ily contained inR (and in fact, normally they are not). The
desired reaching motion is obtained by determining a valid

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

path inCf ree havingqc andqg as endpoints. The path is de-
termined in two phases: path finding and path smoothing.

Path finding. We first find N(qc) ∈ R and N(qg) ∈ R,
which are respectively the nearest nodes toqc andqg in R. It
is required that the interpolation betweenN(qc) andqc and
the interpolation betweenN(qg) andqg are valid. If not, it
means that the graph has not grown sufficiently, or that the
goal configuration is not reachable.

Then, the correct cost in the roadmap is activated accord-
ing to the desired grasping type (right, left or both hands),
and the shortest path inR joining N(qc) andN(qg) is found.
Note thatRensures that the shortest path is valid. Valid paths
are represented as a sequence of configurations, where the
interpolation of each pair of consecutive configurations is
valid. The final reaching pathP is obtained by adding to the
shortest path configurationsqc andqg as end nodes.

Path Smoothing. Because of the random nature of the
nodes in R,P normally does not represent a useful motion
and a smoothing process is required. We basically smoothP
by incremental linearization.

Let q1, q2 andq3 be a corner ofP, i.e three consecutive
configurations inP, and letq = interp(q1,q3, t) wheret is
set according to the relative distances of the three configura-
tions. If the interpolation betweenq1 andq, and betweenq
andq3 are both valid, a local smooth can be applied andq2
is replaced withq.

Our smoothing algorithm always selects the corner ofP
that deviates most from a “straight line”. The distance be-
tweenq2 and q gives us a measure of the deviation. This
process quickly results in a smooth path. After a while, it
also tends to bring the path closer to obstacles.

We propose additional operations, which are applied dur-
ing the basic smoothing process:

• Whenever two consecutive configurations inP get too
close, they get merged into a single one; conversely, if
they are too distant, a new configuration is inserted in-
between by interpolation witht = 0.5.

• At everyk steps during the iterative local smoothing pro-
cess, we try to apply a group smoothing: two configura-
tions in P are randomly selected and, if their interpola-
tion is valid, all nodes between them are removed fromP
(note that a re-sampling may occur due to the operation
described in the previous item). This procedure greatly
accelerates the process in many cases, and even permits
to escape from local minima. In our experiments we have
usedk as the number of nodes inP. Finally, we also ob-
tained significant speed-ups by applying group smooth-
ing hierarchically before entering the iterative loop: from
both endpoints inP, we perform a recursive binary parti-
tion until pairs are smoothed or until consecutive pairs are
reached.

• Last but not least, when the application of one of the
smoothing procedures fails due to non-valid interpolation

between configurations, we test again the same interpo-
lation on different combinations of groups of DOFs (and
not on all DOFs at the same time). Groups of DOFs are
defined as: left arm, right arm, spine and legs. This pro-
cess keeps smoothing for instance the motion of one arm
when spine motion cannot be smoothed anymore because
of obstacles.

7. Extensions for Object Manipulation and Grasping

Probabilistic IK. It is not an easy task for the artist to spec-
ify a realistic 22-DOFs goal configurationqg (used as input
for roadmap querying). To overcome this difficulty we al-
low designers to simply place a three-dimensional model of
a hand anywhere in the workspace, and run a probabilistic
IK algorithm to automatically propose goal configurations
matching the specified 6-DOFs hand location. A probabilis-
tic approach is effective because we already have nodes in
the roadmap with the hand close to the required posture.
In addition, our framework enables us to easily generate
collision-free postures. In contrast, Jacobian-based methods
exhibit better convergence but cannot guarantee collision-
free postures.

Our method is inspired by some Genetic Algorithms
implementations23, 24. Let H be a target hand location. We
first select thek closest configurationsqi , i ∈ 1, . . . ,k in the
roadmap, according to a distance function that only consid-
ers the distance betweenH and Hi , whereHi is the same
objectH, but placed at the hand location specified by con-
figurationqi . The distance function takes the average sum of
the Euclidean distances between each corresponding pair of
vertices inHi andH.

Configurationsqi , i ∈ 1, . . . ,k constitute the initial popu-
lation that converges towardsH by minimizing the distance
function. Usually the configurations in the initial population
are already very close toH, and thus, instead of developing
all usual operators of a Genetic Algorithm approach, we ob-
tain satisfactory results with simple and faster strategies (see
Figure 4).

We use a variation of the roadmap growing procedure.
Random configurationsqrand are generated, and if the in-
cremental interpolation fromqi towardsqrand gives a valid
and closer configuration toH, qi is replaced by the incre-
mented version. However, ifH is located close to the limits
of the reachable workspace, the convergence of this method
may become problematic. In such cases, we adopt a different
strategy and apply perturbations on random DOFs of every
qi . A perturbed configuration is kept only if it is valid and
closer toH. In both methods, backtracking is applied when
a local minimum is reached.

Grasping. We follow the usual approach of having pre-
designed hand shapes for every object to be grasped20, 21, 22.
A complete grasping sequence results from the concatena-
tion of any number of reaching motions and a final grasping.

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

Figure 4: The closest configuration in the roadmap in re-
lation to the target hand (left column), and after the proba-
bilistic IK process (right column).

The final grasping is generated like a reaching motion ex-
cept that it moreover includes the interpolation of finger joint
angles towards target angles defined in the grasping hand
shape. An additional finger-object collision test can be used
to ensure perfect grasping as well as to diminish the required
design precision of hand shapes.

Dynamic roadmap update.Each time an object in the
workspace moves, the roadmap needs to be updated accord-
ingly. The approach is to detect and remove the nodes and
edges that become invalid after a change in the workspace.
As a result, disconnected roadmap components may appear.
Instead of managing disconnect parts25, we follow the phi-
losophy of keeping a single connected roadmap that repre-
sents the reachable configuration spaceCf ree at all times.
Whenever an obstacle in the workspace is inserted, removed,
or displaced, a global roadmap validation routine is per-
formed in three steps:

• All invalid edges and nodes are removed. Disconnected
components may appear.

• We try to connect each pair of disconnected components
by adding valid links joining thek closest pairs of nodes
in each component (in our experiments,k = 0.2n where
n is the number of nodes in the smaller component of a
pair). If disconnected components still linger, we simply
keep the largest component.

• Due to the operations described above, the roadmap may
no longer coverCf ree very well. “Holes” in the coverage
of Cf ree are likely to appear because some regions become
free due to an obstacle displacement, and because of re-
moved components in the roadmap. Hence, the roadmap
is grown again (see Figure 5) as described in Section 5.
Note that the sampling routine can easily be biased to

generate postures only in the parts ofCf ree that are in-
sufficiently covered.

Figure 5: Left: original roadmap. Middle: roadmap exhibit-
ing “holes” due to obstacles displacements. Right: roadmap
is grown again.

Transfer paths.We call a transfer path a motion enabling
the character to move an object from one place to another.

The main difficulty of computing transfer paths is that
roadmap nodes can no longer be guaranteed to be valid be-
cause of objects attached to the character’s hand(s). One first
option is to pre-compute specific roadmaps for each object
that needs to be carried by the character. This solution could
be used, for instance, to plan motions for a character with a
sword in its hand.

We developed an alternative method that returns transfer
paths on the fly. We first compute a reaching pathP between
the first and the last posture of the desired transfer path, with-
out considering the object being transferred. Then the object
is attached to the character’s hand andP is checked for va-
lidity, this time taking the attached object into account. If the
object is small,P may still be valid and directly useful as a
transfer path. If not, the invalid nodes and edges ofP are re-
moved, and disconnected nodes inP are reconnected at run
time using a standard single query RRT17.

The performance of this method greatly depends on the
complexity of the transfer path to be computed, ranging from
extremely fast in simple cases to extremely slow in complex
transfer cases.

After a transfer path has been computed, the displaced
object needs to be removed from the roadmap and inserted
again at its new position. This must be done in both methods,
i.e. when using additional pre-computed roadmaps or when
planning transfer motions on the fly.

Stepping control.Although we control the entire body of
the character when generating motions, we are still limited to
grasping sequences with the feet fixed on the floor. In some
cases, much more realistic results are achieved if the charac-
ter takes some steps. Typically, steps are used for obtaining
better balance and for reaching distant objects.

We developed a multi state approach to let the character
step. As a pre-process, we createk short stepping animations
with different lengths and directions. Each of these anima-
tions transfers the character’s rest posturepr into the final

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

posturepi of the stepping animation i,i ∈ 1, . . . ,k. Each final
posture is considered to be a valid state if the animation link-
ing pr andpi can be played without collisions. Furthermore,
adjacent states are also linked with pre-defined stepping an-
imations if these do not incur collisions.

For each validpi , a roadmapRi is computed considering
pi as the start node of the roadmap generation. In the end,
several roadmaps co-exist, the original reaching roadmapR
being centered atpr while adjacent roadmapsRi are centered
at various positionspi aroundR (see Figure 6).

Figure 6: Distinct roadmaps are generated and connected
with predefined stepping animations.

Let qi andqg be the initial and goal configurations of a
reaching animation to be determined with stepping control.
We first detect the closest configurations toqi andqg in any
of the roadmaps, determining the initial and goal roadmaps
to be used (Ri andRg respectively). Then we determine path
P1 joining qi and pi in Ri , and pathP2 joining pg and qg

in Rg. The final pathP is obtained by concatenatingP1, the
shortest sequence of animations joiningpi and pg, and fi-
nally P2.

A final smoothing process is applied overP, taking into
account only the motions of the upper body limbs. Further
explanations and examples are omitted for lack of space.

8. Analysis and Results

Results.Figure 7 presents animation stills of a virtual char-
acter reaching for objects in a fridge, and as well an ex-
ample of object relocation. In these examples and others
shown in the videos accompanying this article, we have
grown roadmaps using an incremental distanceε of 4 cm
until reaching 1500 nodes. In each example, the design work
was limited to the definition of a few goal postures. Then, the
motions were automatically generated by the planner with-
out any user intervention. The only exception is the head ori-
entation, which was specified by hand in some sequences.

All motions were produced with constant velocity along
planned paths. The timing could easily be improved by the
designer or automatically adjusted e.g. according to Fitts’
law30. Note also that the left arm is not animated while the
right hand is reaching, which creates a somewhat stiff look in
some postures. Additional controllers need to be integrated

in order to correct this, for instance simulating dynamics
over that arm.

The method works extremely well providing that enough
free space exists between obstacles. The roadmap encoun-
ters some difficulty to explore portions of the workspace
containing many obstacles, especially when these are situ-
ated on the borders of the character’s reachable space. This
is exemplified by the refrigerator sequence. Even for small
values ofε, postures where the hand reaches inside the re-
frigerator are not present in the first computed roadmap. Our
probabilistic IK routine elegantly solves this problem. The
designer simply specifies 6-DOF hand postures within the
refrigerator and thus forces the roadmap to grow inside the
refrigerator.

The encoded comfort criteria help to favor natural look-
ing movements. However, the simple criterion currently used
cannot capture all the subtleties of human movement. More
complicated comfort criteria e.g. from biomechanics should
be introduced. It is also important to note that the efficacy
of the weighting scheme is restricted to cases where several
paths exist.

Performance.With roadmaps consisting of around 1500
nodes, shortest paths are instantaneously determined (a few
milliseconds) with anA∗ algorithm. Construction times are
listed in Table 1. In order to accelerate the computation of the
distance function, joint positions relative to configurations in
the roadmap are cached.

The smoothing phase gives good results in less than a
second. Actually, in the presented results, we stopped the
smoothing process when the time limit of 1 second was
reached. It is important to mention that the group smooth-
ing strategy tremendously accelerates the process.

The convergence of the probabilistic IK procedure greatly
depends on the distances between the nodes in the initial
population and the target hand posture. In our examples,
we had cases ranging from a few seconds to a few minutes.
Transfer paths calculated in relatively clear spaces, such as
the example in Figure 7(b), could be computed in approxi-
mately 1 second.

The results and times reported in this paper were obtained
with tools developed in a Maya plug-in, running on a Pen-
tium PC at 1.7 GHz.

9. Conclusions

Contribution. This work makes a number of contributions
that allow to plan grasping motions for a 22-DOF human-
like character in interactive applications. More specifically,
our main contributions are:

• A 22 DOFs abstract control layer that poses the entire
body of the character: arms, shoulders, torso, spine and
leg flexion.

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

Number Roadmap Shortcuts Shortcuts
Scene Triangles Computation Computation Created

No Obstacles 0 70 6 565
Only Body Parts 10153 78 7 559
Cubes 10249 78 11 508
Kitchen 26088 145 18 486

Table 1: Performance measurements. The second column
gives the number of triangles considered for collision detec-
tion. The third and fourth columns give computation times in
seconds. The last column lists the number of shortcuts cre-
ated using the maximum shortcut length of 16 cm.

• A biased sampling method that efficiently covers most-
used parts of the free configuration space with random
human-like grasping postures.

• A new roadmap structure: the probabilistic reaching
roadmap, which is dense in connections between nodes
and encodes comfort criteria.

• Several extensions for generating complete object manip-
ulation sequences.

Future Work. We believe that the techniques presented
herein open several new research directions, and show that
motion planning can greatly benefit computer animation.

The notion of balance can be extended to take into account
supports when hands or other body parts get in contact with
objects. Motion constraints can be added to allow the dis-
placement of objects with fixed orientation, e.g. like a glass
of water. Additional DOFs can be included to control move-
ments that are coordinated with objects, e.g. to control chair
translation (when sitting), or to plan motions like opening a
drawer or pressing a button.

Finally, motion capture data could improve the personal-
ity of movements and could be included at two levels: in
the posture sampling routine during the generation of the
roadmap7, and during the smoothing process by adding mo-
tion texturing8.

Acknowledgements

We express our thanks to Alias/Wavefront for the granted
Maya SDK educational licence. This research has been par-
tially funded by the Federal Office for Education and Sci-
ence in the framework of the European project STAR (Ser-
vice and Training through Augmented Reality), IST-2000-
28764.

References

1. N. I. Badler, C. B. Phillips, and B. L. Webber. Simulat-
ing Humans: Computer Graphics, Animation and Con-
trol. ISBN 0-19-507359-2, 1993.

2. J.-C. Latombe. Robot Motion Planning. ISBN 0-7923-
9206-X, Kluwer Academic Publishers, 1991.

3. Y. Koga, K. Kondo, J. Kuffner, and J. Latombe. Plan-
ning Motions with Intentions.Proc. of SIGGRAPH’94,
395-408, 1994.

4. J.J. Kuffner and J.C. Latombe. Interactive manipula-
tion planning for animated characters.Proc. of Pacific
Graphics’00, poster paper, Hong Kong, October 2000.

5. A. Witkin and Z. Popovic. Motion Warping.Proc. of
SIGGRAPH’95, 1995.

6. M. Gleicher. Retargeting Motion to New Characters.
Proc. of SIGGRAPH’98, 1998.

7. L. Kovar, M. Gleicher, and F. Pighin. Motion Graphs.
Proc. of SIGGRAPH’02, 2002.

8. Y. Li, T. Wang, and H.-Y. Shum. Motion Texture: A
Two-Level Statistical Model for Character Motion Syn-
thesis.Proc. of SIGGRAPH’02, 2002.

9. C. F. Rose, P.-P. J. Sloan, and M. F. Cohen. Artist-
Directed Inverse-Kinematics Using Radial Basis Func-
tion Interpolation.Proc. of Eurographics, 20(3), 2001.

10. D. Tolani, and N. Badler. Real-Time Inverse Kinemat-
ics of the Human Arm.Presence, 5(4):393-401, 1996.

11. P. Baerlocher, and R. Boulic. Task-priority Formu-
lations for the Kinematic Control of Highly Redun-
dant Articulated Structures.Proc. of IROS’98, Victoria,
Canada, Oct. 1998.

12. X. Wang, and J.-P. Verriest. A Geometric Algorithm to
Predict the Arm Reach Posture for Computer-aided Er-
gonomic Evaluation.Journal of Vis. and Comp. Anima-
tion, 9(1):33-47, 1998.

13. L. Kavraki, P. Svestka, J. Latombe, and M. Overmars.
Probabilistic Roadmaps for Fast Path Planning in High-
Dimensional Configuration Spaces.IEEE Transactions
on Robotics and Automation, 12:566-580, 1996.

14. S. La Valle. Rapidly-Exploring Random Trees: A New
Tool for Path Planning.Technical Report98-11, Com-
puter Science Dept., Iowa State University, Oct. 1998.

15. R. Bohlin and L. Kavraki. Path Planning using Lazy
PRM. In Proc. of IEEE Int.Conference on Robotics and
Automation, ICRA, 2000.

16. T. Simeon, J. P. Laumond, and C. Nissoux. Visibil-
ity Based Probabilistic Roadmaps for Motion Planning.
Advanced Robotics Journal, 14(2), 2000.

17. J.J. Kuffner and S.M. La Valle. RRT-Connect: An
efficient approach to single-query path planning.In
Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA’2000), San Francisco, CA, April 2000.

18. S. Bandi and D. Thalmann. Path Finding for Human
Motion In Virtual Environments.Computational Ge-
ometry15(1-3):103-127, 2000.

c© The Eurographics Association and Blackwell Publishers 2003.



Kallmann et al / Planning Collision-Free Reaching Motions

(a)

(b)

Figure 7: Animation sequences within a kitchen scenario. In the first example (a), leg flexion is used for reaching two specified
locations in the fridge: at the door, and inside it. The second example (b) shows the object relocation of a saucepan.

19. R. Bindiganavale, J. Granieri, S. Wei, X. Zhao, and N.
Badler. Posture interpolation with collision avoidance.
Computer Animation ’94, Geneva, Switzerland, 1994.

20. Y. Aydin, and M. Nakajima. Database guided computer
animation of human grasping using forward and inverse
kinematics.Computer & Graphics, 23:145-154, 1999.

21. H. Rijpkema and M. Girard. Computer Animation
of Knowledge-Based Human Grasping.Proc. of SIG-
GRAPH’91, 339-348, 1991.

22. M. Kallmann. Object Interaction in Real-Time Virtual
Environments. DSc Thesis 2347, EPFL, January 2001.

23. A. A. Khwaja, M. O. Rahman, and M.G. Wagner. In-
verse Kinematics of Arbitrary Robotic Manipulators
using Genetic Algorithms. J. Lenarcic and M. L. Justy,
editors,Advances in Robot Kinematics: Analysis and
Control, 375-382. Kluwer Academic Publishers, 1998.

24. M.-H. Lavoie, and R. Boudreau. Obstacle Avoidance
for Redundant Manipulators Using a Genetic Algo-
rithm. CCToMM Symp. on Mechan., Machines, and
Mechatronics, Canada, 2001.

25. T.-Y. Li, and Y.-C. Shie. An Incremental Learning Ap-
proach to Motion Planning with Roadmap Manage-
ment. Proc. of International Conference on Robotics
and Automation (ICRA), 2002.

26. S. Grassia. Practical Parametrization of Rotations Us-
ing the Exponential Map.Journal of Graphics Tools,
3(3):29-48, 1998.

27. J. U. Korein. A Geometric Investigation of Reach. The
MIT Press, Cambridge, 1985.

28. G. Monheit and N. Badler. A Kinematic Model of the
Human Spine and Torso.IEEE Computer Graphics and
Applications, 11(2):29-38, 1991.

29. S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree:
A Hierarchical Structure for Rapid Interference Detec-
tion. Proc. of ACM SIGGRAPH, 171-180, 1996.

30. P. Fitts. The Information Capacity of the Human Mo-
tor System in Controlling the Amplitude of Move-
ment. Journal of Experimental Psychology, 47:381-
391, 1954.

c© The Eurographics Association and Blackwell Publishers 2003.


